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SUMMARY 

This paper describes the application of the Taylor-Galerkin method to the calculation of incompressible 
viscous flows. A finite element fractional-step method for the Navier-Stokes equations is combined with the 
Taylor-Galerkin method to achieve an accurate treatment of the convection part of the problem. A scheme 
of second-order accuracy in time for the non-linear convection written in non-conservative form is 
presented. Numerical results are provided to illustrate the quality of the computed transient solutions in two 
dimensions. 
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1. INTRODUCTION 

The Taylor-Galerkin method was originally introduced in 1983 to achieve higher-order temporal 
accuracy in the finite element solution of evolutionary problems describing pure convection.'.' 
The method has been subsequently used to calculate finite element solutions to various kinds of 
inviscid compressible flows (see Donea et aL3 and the reference therein). Applications to viscous 
problems have been limited so far to the development of numerical schemes for solving the scalar 
convectiondiffusion equation4 and for modelling unsteady internal flows in a turbine cascade 
using the vorticity-streamfunction  equation^.^ In both cases the Taylor-Galerkin method has 
been combined with time-splitting techniques. The aim of the present paper is to describe a 
Taylor-Galerkin scheme of fractional-step type for the transient solution of the incompressible 
Navier-Stokes equations expressed in the primitive variables velocity and pressure. Distinct 
features of the proposed method are a second-order temporal accuracy in highly convective flows 
and an easy generalization to three-dimensional problems. 

The general philosophy behind the proposed approach is that an algorithm is successful 
whenever its elemental components are designed to deal each with a specific part of the governing 
equations. To this end, the Navier-Stokes equations are split in time according to the fractional- 
step method in order to isolate the various spatial differential operators. The temporal approx- 
imation of the dynamical effect associated with each operator is then performed through a Taylor 
expansion to derive the most appropriate time-stepping method. The combination of the Taylor 
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approach for time discretization with the standard Galerkin finite element method for spatial 
approximation guarantees a proper matching of the two discretization processes, particularly in 
the treatment of the convective phenomena, which are dominant in many practical problems. 

The content of the paper is organized as follows. In Section 2 the initial/boundary value 
problem for the unsteady flow of a viscous incompressible fluid is recalled and the proposed 
fractional-step solution procedure is briefly outlined. Section 3 deals with the numerical treat- 
ment of the convection phase in the Navier-Stokes equations. Section 4 describes the viscous 
diffusion phase, whereas Section 5 is devoted to the pressure/incompressibility phase. In Section 6 
some features related to the finite element discretization are pointed out. Finally, Section 7 
contains some numerical illustrations of the performance of the proposed fractional-step method. 

2. GOVERNING EQUATIONS AND SOLUTION PROCEDURE 

Let fl be a bounded domain of Rd, d = 2 or 3, with a piecewise smooth boundary r. The motion of 
a viscous incompressible fluid is governed by the Navier-Stokes equations 

au 
- + ( u . V ) u  = V - a ,  
at 

(2) 
where u = u(x, t )  is the velocity and a = a ( u )  is the total stress (per unit density of the fluid). We 
shall consider the case of a Newtonian fluid whose constitutive equation is given by 

v - u  = 0, 

C(U) = - P I  + 2vD(u).  (3) 
Here p = p ( x ,  t)  is the pressure (per unit density), v is the coefficient of kinematic viscosity, I is the 
unit tensor and D ( u )  is the deformation rate tensor defined by 

D ( u )  = ~ [ V U  + ( V U ) ~ ] .  (4) 

Ulr, = b, (5 )  

(6) 

The boundary conditions considered here are 

n-a(u) l r2  = c + d, 

where rl and r2 are two disjoint non-overlapping subsets of the boundary r, b represents the 
velocity vector prescribed on rl, c and d designate the pressure and the viscous part respectively 
of the traction vector prescribed on r2, and n is the outward unit vector normal to r. If rl = r 
and Tz = 0, the prescribed velocity b must satisfy the consistency condition 

i n - b d T  = 0. (7) 

In' this case the pressure field p is determined up to an arbitrary additive constant value. 
The initial condition consists of specifying the velocity field at the initial time t = 0, namely 

u(x, 0) = uo(x) with V - u ,  = 0. (8) 
The calculation of transient solutions to the incompressible Navier-Stokes equations presents 

1. The non-linearity of the convective term makes an explicit treatment computationally 

the following difficulties. 
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attractive, but it is not easy to assure a high-order accuracy in time using standard explicit 
methods. 

2. The 'mixed' hyperbolic-parabolic character of the momentum equation can give rise to 
singular behaviour in the solution, particularly in regions where convection dominates over 
diffusion. 

3. The elliptic character of the incompressibility condition requires an implicit treatment for 
the determination of the pressure. 

In an attempt to overcome the above difficulties, a fractional-step approach for the time 
integration is adopted here, which permits the isolation of the effects of the various spatial 
operators. Accordingly, the proposed algorithm is divided into the following three phases: 
convection, viscous diffusion and incompressibility. 

3. CONVECTION PHASE 

In the convection phase, only the non-linear term in the momentum equation (1) is retained. The 
equation to be solved reduces therefore to the following hyperbolic vector equation: 

au 
- + ( u . V ) u  = 0. 
at (9) 

A second-order Taylor-Galerkin method is used to obtain a discrete approximation of (9). The 
equation is first discretized in time by considering a Taylor series expansion in the (possibly 
variable) time step At = t"+' - t" up to the second order: 

u"" = U" + At@' + $(A.t)*u:, + O[(At)3]. (10) 
The first-order and second-order time derivatives in (10) are then expressed from the governing 
equation (9) in the form 

u , =  - (u-V)u,  (11) 

(12) u,, = -(U,.V)U - (U.V)U, = {[(u*V)u].V}u + (u.V)[(u-V)u]. 

The intermediate velocity field u *  resulting from the convection phase is then determined from u" 
by means of equation (10) in which the time derivatives are replaced with the above expressions 
and u"+l  = u*. This yields 

u* - u" 
At 

= -(u" * V)U" + $At ([(u" * V)U"] * V )  U" + $At(u" * V)[(U" * V)U"]. (13) 

Equatien (13) represents a time discretization of the Lax-Wendroff type for the vectorial 
convection equation written in non-conservative form. The scheme is second-order accurate in 
time. In this respect it is important to note that the second-order terms are not to be interpreted as 
a numerical diffusion or viscosity inherent to the scheme. Instead, these terms are an element of 
the improved difference approximation to the time derivative with respect to that associated with 
the explicit Euler algorithm. 

A weak form of equation (13) is obtained by taking the scalar product with weighting functions 
w = w(x) belonging to a suitable space of vector-valued functions and then integrating by parts 
the terms including second-order spatial derivatives. Let (H' (R))d denote the standard Sobolev 
space of vector functions defined on R c Rd which are square integrable and have square 
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integrable first-order derivatives. Standard vectorial calculations lead to the following weak 
formulation of the time-discretized convection equation (13): find u*E(H' 

(w,u* - u")/At = -(w,(u"-V)u") -~At[((u"*V)w,(u"*V)u") - ((~*U")W,(U"*~)U">,] 

such that 

++At([w x V x U" + (w.V)U" - w(V.U")],(U"'V)U"), 
V w E (H' (14) 

where (,) denotes the integration over the domain R and (,), over the boundary r. The 
boundary conditions to be imposed in the convection phase are discussed later. 

For reasons of computational efficiency it can be convenient to express equation (14) in an 
equivalent form by writing the first two terms in the last scalar product into a single expression. 
The problem now reads: find u*E(H'(R))~  such that 

(w,u* - u")/At = -(w,(u"-V)u") - $At[((u"-V)w,(u"-V)u"> -((n.u")w,(~"*V)u")~] 
+ +At ( W, { [(u" * V)U"]. V}U") - $At ( w(V * u"), (u"' V)U" ), 

Vw E (H1 (15) 

The second-order terms present in (14) or (15) admit a simple physical interpretation. The most 
important term is the first one, namely 

- $At((u".V)w, (u"*V)U"). (16) 

It is present even in the case of a linearized version of the convection equation (uniform 
convection velocity). This term is block diagonal: the Cartesian components of the velocity vector 
are uncoupled. Each block is associated with a symmetric operator when u and w are chosen to 
belong to the same space (Galerkin method). Furthermore, such an operator has a tensorial 
structure which enables it to act only in the direction of the convection velocity and not 
transversely. In other words, it has a streamline character which is directly provided by the 
Lax-Wendroff time discretization without the need for any specific assumption or the introduc- 
tion of a special parameter. 

The second term in (14), proportional to At and involving volume integration, is 

+At([w x V x U" + (w.V)U" - w(V.U")],(U"*V)U"). (17) 
It vanishes in the case of a uniform convection field and represents a correction to the leading 
quantity 

- (W + *At(u".V)w, (u".V)U"). (18) 
The correction will be important or negligible depending on the measure of the non-uniformity of 
the convection velocity field as indicated by the three vector derivatives V x u" (vorticity), 
(w * V)u" (variation of u" in the direction of w) and V * U" (dilatation). The last contribution would 
be zero in the case of an exactly solenoidal velocity field. However, since the incompressibility 
condition is satisfied, in the present formulation, elementwise rather than pointwise, this contri- 
bution will be retained for internal consistency even though it is expected to be very small. 

To discuss the meaning of the surface term resulting from the integration by parts, namely 

+At ((n - u")w, (u" * V)U")~, (19) 
it is necessary to analyse the boundary conditions imposed in the convection phase. Since the 
problem associated with equation (9) is hyperbolic, boundary values on rl can be prescribed only 
where the convection velocity is directed into the domain. Denoting by r:Ti!, the portion of the 
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boundary Ti such that n - b"+ < 0, the boundary condition for the convection phase will be 

U*lr;;i; = b"+l .  (20) 
Correspondingly, the weighting function w will be chosen to satisfy the homogeneous boundary 
condition wlr;;i; = 0 and the surface integration will be limited to the complementary portion of 
the boundary where the flow velocity is directed outwards from the computational domain. In 
this way, and by its very structure, the surface term is capable of taking into account the outflow 
of the momentum along the streamlines of the convection field and assures good absorbing 
properties at outflow boundaries in transient calculations, as has been clearly demonstrated in the 
case of a scalar equation.' 

4. VISCOUS DIFFUSION PHASE 

This phase considers the viscous terms in the Navier-Stokes equations. From equations (1) 
and (3) one has 

d U  _ -  - V.[2vD(u)]. 
at 

A first-order explicit (Euler) time integration scheme is used here so that a new intermediate 
velocity u** is determined from u* by solving the equation 

u** - u* 
At = Va[2vD(u*)]. (22) 

The associated weak formulation is obtained, after integration by parts, in the following form: 
find u**~(H'(Sl))d such that 

( w , u * * - I I * ) / A ~ =  -2(vD(w) ,D(~*))  + (W,d")r,, VWE(H'(~Z))~ ,  w I ~ ,  =O. (23) 

The boundary conditions to be imposed in this phase are the velocity boundary conditions ( 5 )  on 
T l ,  which read 

Y (24) =bn+l  r1 

and the viscous part of the stress boundary conditions (6) on Tz. The latter appears as a natural 
boundary condition, as shown by the surface term in equation (23). 

It should be noted that a second-order implicit integration scheme, such as the 
Crank-Nicolson algorithm: could easily be introduced in this phase. 

5. PRESSURE PHASE AND INCOMPRESSIBILITY 

The intermediate velocity field resulting from the above phases contains the effects of convection 
and viscous diffusion but does not satisfy the incompressibility condition. In the last phase the 
final velocity field u"" is determined from the intermediate velocity u** by adding the dynamical 
effect of the pressure p"+ determined so as to make the incompressibility condition satisfied. 
From equations (1) and (3) the pressure phase reads 

8 U  
- = -vp ,  
at 
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Using a first-order implicit Euler scheme for the time discretization of (29, the following system of 
coupled equations for un+' and pn+l  is obtained: 

(28) 
Actually, the objective is to decompose the intermediate field u** into the sum of a vector field 

with zero divergence and another with zero curl. The divergence-free component is the end-of- 
step velocity vector u"+ ' whereas the irrotational one is related to the gradient of the pressure 
field pn+ ' .  Such a decomposition is associated with the presence of an operator of orthogonal 
projection (projection method).6 

The weak formulation of problem (27), (28) is obtained, after integration by parts, in the form:7 
find U~' 'E(H' (Q) )~  and pn+'  EL'(Q) such that 

(w,un+' - - * * ) / A t  = ( V - W , ~ " " )  + (w,c"+') , -~,  VWE(H'(R))~,  n-wl,, =0, (29) 

V.U"+' = 0. 

( 4 ,  V.U"+ ' )  = 0, V4€L*(l2) ,  (30) 
where L2(Q) denotes the Hilbert space of square integrable scalar functions and q is the weighting 
function associated with the continuity equation. 

As far as the velocity boundary conditions are concerned, only the normal component of the 
velocity is imposed in this phase: 

n-u"+l l r l  = n.b"+l .  (3 1) 

Finally, the pressure loads prescribed on the portion r2 of the boundary are imposed as natural 
boundary conditions in the surface term present in equation (29). 

It is important to note that the problem (29)-(31) is the primal-dual form of an elliptic 
boundary value problem for the pressure. It is well known that the boundary conditions 
associated with a Poisson problem for the pressure in the fractional-step projection method 
consist of specifying the value of the pressure gradient normal to the boundary but not along the 
tangential direction. As a consequence, the velocity conditions on rl are imposed only for the 
normal component and not for the tangential ones, the latter being satisfied here in a weak sense 
only. This approach completely avoids the spurious spatial oscillations of pressure, known as 
chequerboarding.8 A detailed discussion of this important issue is provided in Reference 7, where 
numerical solutions of the standard driven cavity problem (steady and unsteady) are presented. 
The imposition of the boundary condition (31) only for the normal component of velocity in the 
incompressible phase has been shown to yield a pressure field free from spatial oscillations, using 
both uniform and non-uniform meshes. 

As with any other procedure of the fractional-step type, the combination of the three 
computational phases just described introduces time-splitting errors, which are, however, not 
discussed in the present paper. We only remark that the first-order discretization for the pressure 
phase and the second-order treatment of the other two phases combine to give a satisfactory 
numerical accuracy when the temporal variation of the velocity field is caused mainly by 
advection and/or viscous diffusion effects. 

6. FINITE ELEMENT DISCRETIZATION 

The fully discrete form of equations (14), (20), (23)-(24) and (29)-(31) are subsequently obtained by 
means of the conventional Galerkin-Bubnov finite element method. The flexibility and accuracy 
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of this method are well recognized. Four-noded isoparametric elements with bilinear shape 
functions for the velocity and elementwise constant approximation for the pressure are con- 
sidered. 

The convection phase, though being based on an explicit time integration algorithm, requires 
the inversion of the mass matrix. The importance of including the consistent mass matrix in 
transient convective transport problems was originally demonstrated by Gresho et aL9 The 
solution of the associated system of linear equations can be performed very efficiently in regular 
domains with a Cartesian mesh of quadrilateral elements by means of the algorithm developed by 
Staniforth and Mitchell.'o.'' On the other hand, in the case of a general mesh the inversion of the 
mass matrix can be performed approximately by means of an iterative procedure of the Jacobi 
type.4 By virtue of the symmetric and diagonally dominant character of the matrix, the procedure 
converges in a few iterations. Three iterations are employed here to preserve the high phase-speed 
accuracy of the spatial discretization considered. On the contrary, in the viscous diffusion phase 
an approximation in one iteration is employed, which corresponds to the standard diagonal 
lumped matrix obtained by the row-sum technique. Such an approximation is well justified in the 
context of explicit time integration of parabolic equations. The same approximation is also 
applied in the pressure phase and has been justified for different reasons.' 

The system obtained from equations (29) and (30) represents a linear system of coupled 
equations for the final velocity and pressure. A symmetric system of linear equations for the 
pressure can be derived and solved via a direct method such as the Cholesky decomposition. 
Once the pressure has been obtained, the final velocity is then computed (see Reference 7 for 
details). 
In the proposed method the time step A t  will be restricted by conditions of numerical stability. 

The condition to be considered in the convection phase has been discussed in detail for the two- 
dimensional case in Reference 2. In this connection it is worth mentioning that the time accuracy 
for the convection phase can be increased to the third order by applying the two-step procedure 
suggested by Selmin." This amounts to solving in sequence two second-order schemes of the type 
discussed herein, but with appropriately modified coefficients. The resulting third-order scheme 
clearly requires twice the computational effort needed by its second-order counterpart, but has the 
advantage of a substantial enlargement of the domain of numerical stability in two and three space 
dimensions.' 

The stability limits to be used in the viscous diffusion phase follow from the standard condition 
valid for a scalar diffusion equation in two dimensions. 

7. NUMERICAL EXAMPLES 

7.1. Vortex shedding 

The evolution of twin vortices behind a flat plate has been calculated and compared with 
numerical" and e~perimental '~ results. The experiment has carried out in a water tank 0.40 m 
wide. A thin test plate of size H = 0-03 m immersed in the water was impulsively started from 
rest at the velocity (ul = U =4.95 x lod3 m s-I). The outlet boundary is assumed to be traction- 
free. Along the other two boundaries the tangential tractions and the normal velocity com- 
ponents are assumed to be zero. A no-slip condition is prescribed at the plate surface. The initial 
condition is u=O at t = O .  The fluid density is p=998.0 kgm-3 and the dynamic 
viscosity p= 1.008 x Pas. 

Since the geometry and the boundary conditions are symmetric, only the lower half of the tank 
has been modelled. A constant time step size At = 25 s has been chosen. The selected finite 
element mesh and the problem data are shown in Figure 1. 
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Figure 1. Vortex shedding; finite element mesh and boundary conditions 
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Figure 2. Vortex shedding movement of the stagnation point (comparison with experimental and other numerical 
results) 
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Figure 3. Vortex shedding velocity vectors at t = 8 s 

The calculated time history of the stagnation point position is reported in Figure 2 together 
with experimental and other numerical results. The calculated velocity field at the time t = 8 s is 
shown in Figure 3. The present results are in excellent agreement with those reported in the 
referenced works.133 l4 



A FRACTIONAL-STEP TAYLOR-GALERKIN METHOD 509 

7.2. Plane jet  simulation 

A plane jet problem is considered in which the flow domain is the right half-space {xIxl > 0, 
x,ER}. The viscosity is assumed to be v = 5 x lop4 and the density p = 1 (non-dimensional 
variables are used). The fluid is at rest at t = 0 and the jet aperture is located on the line x1 - 0 
centred at x = (0,O) and is 1/16 wide. The jet profile is parabolic with a maximum velocity equal 
to unity, the jet being horizontal at x1 = 0. The corresponding Reynolds number is Re = 125. The 
computational domain defined by 30, 1 [ x 3 - 5, + +[ is discretized by a 32 x 32 uniform mesh 
of the four-noded elements. The time step is taken to be A t  = 0.01. The flow pattern, particularly 
the vortex creation close to the jet aperture, is represented at different times in Figure 4 and is in 

i 

Figure 4. Plane jet (Re = 125); streamfunction distribution: (a) t = 0.1 (A$ = 
(d) t = 4.0 (A$ = 5 x 

(b) t = 1.2 (A+ = 2.5 x 
(c) t = 2.5 (A$ = 2.5 x 
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good agreement with the results of Bristeau et ~ 1 . ' ~  The corresponding pressure distributions are 
given in Figure 5 .  

7.3. Flow over a square obstacle 

A sketch depicting the geometry of the flow domain, the discretization and the boundary 
conditions is given in Figure 6. At the inlet a constant uniform velocity is imposed, while at the 
outlet, traction-free conditions are considered. 

4 
i 

Along the other boundaries and along the 

Figure 5. Plane jet ( R e  = 125); pressure contours: (a) t = 0.1 (Ap = lo-'); (b) t = 1.2 (Ap = (c) t = 2.5 
(Ap = 5 x (d) t = 4 0  (Ap = 5 x lo-') 
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Figure 6. Flow over a square obstacle; geometry, finite element mesh and boundary conditions 

(4 
Figure 7. Flow over a square obstacle (Re  = 200); streamfunction distribution: (a) t = 1.0; (b) t = 2.0; (c) r = 5.0; 

(d) t=%O ($-values are 002,00(-0.1)-08 for isolines 1-10) 

obstacle, no-slip conditions are considered. The viscosity is taken to be v = 5 x and the 
density p = 1 (non-dimensional variables are used), corresponding to Re = 200. The calculation 
has been performed up to the time t = 50, at which the flow has reached a steady state. The flow 
evolution in time is represented in Figure 7 by the streamline distributions at t = 1.0,2.0 5.0 and 
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Figure 8. Flow over a square obstacle ( R e  = 200); pressure contours at t = 50.0 (p-values are -0.7(0.2)1.1 for 
isobars 1-10) 

50.0, while the pressure pattern at the final time is shown in Figure 8. The maximum value of the 
streamfunction in the recirculation region at the steady state is found to be JI,,, = 0-034, which 
compares well with the value JI,,, = 0.038 obtained on the same mesh but using biquadratic 
approximations. l6 

8. CONCLUSIONS 

A transient finite element methodology has been presented for solving incompressible viscous 
flow problems. The salient feature of the proposed method is a fractional-step approach to the 
numerical time integration of the unsteady Navier-Stokes equations in which the convective, 
viscous and pressure terms are treated in three distinct phases. A second-order accurate explicit 
Taylor-Galerkin method is introduced in the convection phase. This is followed by a first-order 
explicit treatment of the viscous diffusion phase. Finally, a first-order implicit scheme is used in 
the pressure phase, the pressure being determined so that the incompressibility condition remains 
satisfied. 

The advantages of the proposed method are its extremely simple algorithmic structure, the ease 
of implementation of new solution algorithms for the various phases as they eventually become 
available, and its straightforward extension to deal with three-dimensional simulations and 
turbulence modelling. The numerical examples discussed in the paper indicate that, in addition to 
its simplicity, the proposed method is capable of producing accurate results. 
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